NONSTIFFNESS OF A NONSHALLOW SPHERICAL DOME

PMM Vol. 32, No. 3, 1968, pp. 435-444

L. S. SRUBSHCHIK

(Rostov-on-Don)
(Received October 20, 1967)
An asymptotic method, developed in [1 to 3], is used to inveatigate the nonstiffness of a nonshallow spherical dome. Vorovich [4] introduced the class of nonstiff shells, i.e., shells having for given boundary conditions, and no external loading, trivial ones equilibrium states different from the trivial ones. A characteriatic property of a nonstiff shell is the fact thet the lower critical loading for anch shells is a negative quantity.

A rigorous proof of the existence of nonatifi shells, and a corresponding numerical analyais of the problem within the scope of shallow theory were given in [5 and 6]. Here the nonstiffoes is proved atrictly for a nonshallow spherical dome with fixed hinged clamping along the edge. Namely, it is shown that still another equilibrinm mode, similar to the mirror image, exists in addition to the trivial mode. The nonlinear Reisener equations [7] are ased for the finite symmetric deformation of thin shells of revolution, derived without assumptions on the smallness of the angle of rotation of a shell element due to deformation.

These equations contain a natural small parameter ϵ^{2}, the relative thinness of the walls ($\epsilon^{2}=h^{2} / a^{2} \gamma^{2}$, where h is the thickness, a the radius of the sphere, and γ is a known number) in the higher derivatives. To prove the existence of a second aolution, asymptotic expansions are first constructed for mall ϵ (Section 2), and then the existence of the second solution is proved for the problem for which the constructed asymptotic expansions are valid (Section 3).

Let us note that if the formal constraction of the asymptotic goes through for any spherical segments (including large hemispheres), then the proposed method for the existence of the second solution is connected to the constraint that the dome be less than a hemisphere.

1. Formulation of the problem. Let as consider a syatem of nonlinear Reisener differential equations for the symmetric deformation'of a spherical dome in the absence of loading

$$
\begin{gather*}
\varepsilon^{2}\left\{\frac{d}{d \xi}\left(\sin \xi \frac{d u}{d \xi}\right)+\cos (\xi-u) \frac{\sin (\xi-u)-\sin \xi}{\sin \xi}-\right. \tag{1.1}\\
-v[\cos (\xi-u)-\cos \xi]\}+v \sin (\xi-u)=0 \\
\varepsilon^{2}\left\{\frac{d}{d \xi}\left(\sin \xi \frac{d v}{d \xi}\right)-\left[\frac{\cos ^{2}(\xi-u)}{\sin \xi}-v\left(1-\frac{d u}{d \xi}\right) \sin (\xi-u)\right] v\right\}+ \\
+\cos \xi-\cos (\xi-u)=0 \\
(0 \leqslant \xi \leqslant b<1 / 2 \pi, \quad 0<v<0.5)
\end{gather*}
$$

with boundary conditions correaponding to a fixed hinge clamping of the dome along the odge

$$
\begin{gather*}
u(0)=0, \quad v(0)=0 \\
{\left[\frac{d v}{d \xi}-v \frac{v \cos (\xi-u)}{\sin \xi}\right]_{\xi=b}=0, \quad\left[\frac{d u}{d \xi}+v \frac{\sin \xi-\sin (\xi-u)}{\sin \xi}\right]_{\xi=b}=0} \tag{1.2}
\end{gather*}
$$

All the quantities in (1.1) and (1.2) are dimensionless. Here

$$
v=\frac{\Psi}{a E h}, \quad u=\xi-\Phi, \quad \varepsilon^{2}=\frac{h^{2}}{a^{2} \gamma}, \quad \gamma=12\left(1-v^{2}\right)
$$

(aee Fomula (5.8) in [7]).
Here u is the angle of rotation of a shell element due to deformation, Ψ is the stress function; v the Poisson ratio, E is Young's modulus, h the shell thickness, r the radius of the sphere, ξ a parameter corresponding to the arc length of a great circle of a unit sphere. The small parameter ϵ^{2} characterizes the relative thinness of the shell wall.

It is easy to see that the problem (1.1), (1.2) has the trivial solution $v=u \equiv 0$. This solution corresponds to an equillbrium mode with zero stresses and strains. Let us consider amall values of the parameter ϵ^{2}. Let up put $\epsilon=0$. Eqs. (1.1) will transform into algebraic equations

$$
\begin{equation*}
v_{0} \sin \left(\xi-u_{0}\right)=0, \quad \cos \xi-\cos \left(\xi-u_{0}\right)=0 \tag{1.3}
\end{equation*}
$$

Here there are two solntions. One $v_{0}=u_{0} \equiv 0$ is trivial, and simulataneously a solution of the problem (1.1), (1.2). The other solution

$$
\begin{equation*}
v_{0}=0, \quad u_{0}=2 \xi \tag{1.4}
\end{equation*}
$$

correaponds to an equilibrinm mode similar to the mirror image.
The solution (1.4) satisfies (1.1), but does not satisty the boundary conditions at $\xi=b$ in (1.2). It is hence natural to expect the problem (1.1), (1.2) to have a second solution for mall \in, which will behave aimilarly to (1.4) everywhere within the domain, bat will undergo rapid changes only near the boundary that the boundary conditions (1.2) will be satisfied.
2. Construction of the asymptotic. Let us introduce some notation. Let the vector $\mathbf{V} \equiv(u, v)$ be a solution, and $\mathbf{P}[\mathbf{V}]$ the left side of the system (1.1) to (1.4). Asymptotic expansions

$$
\begin{align*}
& u=\sum_{s=0}^{n} \varepsilon^{s} u_{s}+\sum_{s=0}^{n} \varepsilon^{s} g_{s}+\sum_{s=0}^{n} \varepsilon^{s} \beta_{s}+z_{n} \\
& v=\sum_{s=0}^{n} \varepsilon^{s} v_{s}+\sum_{s=0}^{n} \varepsilon^{s} h_{s}+\sum_{s=0}^{n} \varepsilon^{s} \alpha_{s}+x_{n} \tag{2.1}
\end{align*}
$$

are constructed for the second solution.
The functions $u_{s}(\xi)$ and $v_{s}(\xi)$ are obtained by using the first iteration process [8]. Namely, we demand that

$$
\mathbf{P}\left[\mathbf{V}_{n}\right]=O\left(\varepsilon^{n+1}\right), \quad V_{n}=\left(\sum_{s=0}^{n} \varepsilon^{s} u_{s}, \quad \sum_{s=0}^{n} \varepsilon^{s} v_{s}\right)
$$

Equating the coefficients of different powers of \in to zero, we obtain the system (1.3) (whereby the second solntion (1.4) is chomen) to determine u_{0}, v_{0}, and a system of linear homogeneons equations to determine u_{a}, v_{z}. Hence

$$
u_{s}(\xi)=v_{s}(\xi)=0 \quad(s=1,2, \ldots, n)
$$

Functions of boundary layer type $h_{\text {, }}(\xi), \xi_{g}(\xi)$ are obtained by uaing the second
iteration process [8]. To do this we seek the differences $v-v_{0}$ and $u-u_{0}\left(v_{0}=0\right.$, $u_{0}=2 \boldsymbol{\xi}$ as

$$
\begin{equation*}
v=\sum_{s=0}^{n} \varepsilon^{s} h_{s}, \quad \nu-2 \xi=\sum_{s=0}^{n} \varepsilon^{s} g_{s} \tag{2.2}
\end{equation*}
$$

Let us substitute (2.2) into (1.1), (1.2), let us make the change $\xi=b-\epsilon t$, and then let us use Taylor expansions in the neighborhood of $\epsilon=0$ for the functions
$\sin (b-\varepsilon t), \quad \cos (b-\varepsilon t), \quad \sin \left(b-\varepsilon t+\sum_{s=0}^{n} \varepsilon^{s} g_{s}\right), \quad \cos \left(b-\varepsilon t+\sum_{s=1}^{n} \varepsilon^{s} g_{s}\right)$
and we equate the coefficients of $\varepsilon^{0}, \varepsilon^{1}, \ldots, \varepsilon^{n}$ to zero. We obtain a system of nonlinear differential equations to obtain $h_{0,} g_{0}$:
$\sin b g_{0}{ }^{\prime \prime}-h_{0} \sin \left(b+g_{0}\right)=0, \quad \sin b h_{0}{ }^{\prime \prime}-\cos \left(b+g_{0}\right)+\cos b \ldots 0$

To obtain h_{1}, g_{1} we obtain the system

$$
\begin{gather*}
\sin b g_{1}{ }^{\prime \prime}+h_{0}\left(t-g_{1}\right) \cos \left(b+g_{0}\right)-\operatorname{tg}_{0}{ }^{\prime \prime} \cos b-\cos b g_{0}^{\prime}- \\
-h_{1} \sin \left(b+g_{0}\right)=0 \tag{2.4}
\end{gather*}
$$

$\sin b h_{1}{ }^{\prime \prime}-t h_{0}{ }^{\prime} \cos b-h_{0}{ }^{\prime} \cos b+\left(g_{1}-t\right) \sin \left(b+g_{0}\right)+t \sin b=0$
Analogously, we derive the first boundary condition for h_{0} and g_{0} at $t=0$ from (1.2), and the second boundary condition is obtained from the requirement that the solution have boundary layer character in the neighborhood of $\xi=b$, i.e.

$$
\begin{equation*}
h_{0}^{\prime}(0)=g_{0}{ }^{\prime}(0)=0, \quad h_{0}(\infty)=0, \quad g_{0}(\infty)=0 \tag{2.5}
\end{equation*}
$$

There results from (2.3) and (2.5) that

$$
\begin{equation*}
h_{0}=g_{0}=0 \tag{2.6}
\end{equation*}
$$

Now, using (2.6) we deduce from (2.4)

$$
g_{1}^{\prime \prime}-h_{1}=0, \quad h_{1}^{\prime \prime}+g_{1}=0
$$

with the bonndary conditions

$$
h_{1}^{\prime}(0)=0, \quad g_{1}^{\prime}(0)=2(1+v), \quad g_{1}(\infty)=h_{1}(\infty)=0
$$

We hence obtain

$$
\begin{align*}
h_{1}(\xi)= & a(\xi, \varepsilon)(\cos \alpha+\sin \alpha), \quad g_{1}(\xi)=a(\xi, \varepsilon)(\sin \alpha-\cos \alpha) \\
& a(\xi, \varepsilon)=\sqrt{2}(1+v) \exp \left(\frac{b-\xi}{\sqrt{2} \varepsilon}\right), \quad \alpha-\frac{\sqrt{2}}{2} \frac{b-\xi}{\varepsilon} \tag{2.7}
\end{align*}
$$

The functions $h_{s}, g_{s}(s \geqslant 2)$ are found analogously from a system of linear equations of the form (2.7), bat inhomogeneous now, where the right sides are finite polynomials consisting of members of the form

$$
t^{m}\left[B \sin \left({ }^{1} / 2 \sqrt{2} l t\right)+C \cos (1 / 2 \sqrt{2} n t)\right] \exp (-1 / 2 \sqrt{2} k t)
$$

where m, k, l and n are integers not greater than s. It is easy to see that h_{s}, g_{s} will be functions of boundary layer type.

Finally, let is introduce the infinitely differentiable monotonous functions $\beta_{s}(\xi), \alpha_{3}(\xi)$, which cancel the residual (of exponential order of smallness) in satisfying the boundary conditions (1.2) at $\xi=0$ for the functions g_{s} and h_{s}, respectively:

$$
\beta_{s}(\xi)=\left\{\begin{array}{cc}
-g_{s}(0) & (0 \leqslant \xi \leqslant 0.1 b), \\
0 & (02 b \leqslant \xi \leqslant b),
\end{array} \quad \alpha_{s}(\xi)=\left\{\begin{array}{cc}
-h_{s}(0) & (0 \leqslant \xi \leqslant 0.1 b) \\
0 & (02 b \leqslant \xi \leqslant b)
\end{array}\right.\right.
$$

Therefore, the asymptotic expansions (2.1) may be rewritten as follows:

$$
\begin{equation*}
u=2 \xi+\sum_{s=1}^{n} \varepsilon^{s} g_{s}+\sum_{s=1}^{n} \varepsilon^{s} \beta_{s}+z_{n}, \quad v=\sum_{s=1}^{n} e^{s} h_{s}+\sum_{s=1}^{n} e^{s} \alpha_{s}+x_{n} \tag{2.8}
\end{equation*}
$$

The notation

$$
\begin{equation*}
\psi_{n}=v-x_{n}, \quad \varphi_{n}=u-z_{n} \tag{2.9}
\end{equation*}
$$

will be used later in Section 3.
Let us note that the estimates*

$$
\begin{equation*}
\left|\varphi_{n}\right| \leqslant m_{1} \varepsilon \xi, \quad\left|\psi_{n}\right| \leqslant m_{2} \varepsilon \xi \tag{2.10}
\end{equation*}
$$

are easily established from (2.8) and the explicit expressions for h_{s}, g_{s}, α_{s} and β_{s}.
3. Foundation of the asymptotic. Existence of a nontrivial solution. Let us introduce the following spaces of the vectors $\mathbf{V} \equiv(u, v)$.

1) A space consisting of vectors with the finite nom

$$
\begin{equation*}
\|\mathbf{V}\|_{x}=\|u\|_{c_{3}}+\|v\|_{c_{3}} \tag{X}
\end{equation*}
$$

where C_{2} denotes the Banach space whose elements are all twice continuously differentiable functions in the segment $[0, b]$, which vanish for $\xi=0$;
2) A space of pairs $\lambda=(\mathbf{f}, \varphi)$, where $f \equiv\left(f_{1}, f_{2}\right), \varphi \equiv\left(\varphi_{1}, \varphi_{2}\right)$, i.e., the space of quadruples $\lambda \equiv\left(f_{1}, f_{2}, \varphi_{1}, \varphi_{2}\right)$ with the norm

$$
(Y) \quad\|\lambda\|_{Y}=\left\|f_{1}\right\| c_{0}+\left\|f_{2}\right\| c_{0}+\left|\varphi_{1}(b)\right|+\left|\varphi_{2}(b)\right|
$$

where C_{0} denotes the B anach space of all continuous fanctions with the finite norm

$$
\left\|f_{1}\right\| c_{n}=\max \left|f_{1} / \xi\right| \quad(0 \leqslant \xi \leqslant b)
$$

We shall consider the problem (1.1), (1.2) as a functional equation

$$
\begin{equation*}
\mathbf{P}(\mathbf{V})=0 \tag{3.1}
\end{equation*}
$$

where the operator P is defined by the left side of the system (1.1), (1.2). Let us show that the operator P acts from the space X into Y. To do this, we note that the relation ohips

$$
u(\xi)=u^{\prime}(0) \xi+u^{\prime \prime}\left(\xi_{1}\right) \xi^{2} \quad\left(0 \leqslant \xi_{1} \leqslant b\right), \quad|u(\xi)| \leqslant \xi\|u\|_{c_{1}}
$$

are valid for any function u from the space C_{2}.
Let us now consider the first Eq, in (1.1). Using the fact that u and v are elements from C_{2}, we easily deduce the inequalitios

$$
\begin{gather*}
|\cos (\xi-u)-\cos \xi|=2|\sin (\xi-1 / 2 u) \sin 1 / 2 u| \leqslant|u(\xi)| \leqslant \xi\|u\|_{2} \\
\left|\sin \xi u^{\prime \prime}\right| \leqslant \xi\|u\|_{c_{2}} \quad\left(0 \leqslant \xi_{i} \leqslant b\right) \tag{3.2}
\end{gather*}
$$

[^0]\[

$$
\begin{gathered}
\left|\cos \xi u^{\prime}+\frac{1}{2} \frac{\sin 2(\xi-u)}{\sin \xi}-\cos (\xi-u)\right|=\mid \cos \xi u^{\prime}(0)+\cos \xi u^{\prime \prime}\left(\xi_{2}\right) \xi+ \\
+\frac{1}{2} \frac{\sin 2(\xi-u)}{\sin \xi}-\cos \xi+(\cos \xi-\cos (\xi-u))|\leqslant|\left(u^{\prime}(0)-1\right) \cos \xi+ \\
+\frac{1}{2} \frac{\sin 2(\xi-u)}{\sin \xi}\left|+\left|u^{\prime \prime}\left(\xi_{3}\right) \xi \cos \xi+(\cos \xi-\cos (\xi-u))\right| \leqslant\right. \\
\quad \leqslant\left|\left(u^{\prime}(0)-1\right) 2 \sin ^{2} \frac{\xi}{2}+\xi r\left(\xi_{4}\right)\right|+m_{3} \xi\|u\|_{C_{2}} \leqslant m_{4} \xi\|u\|_{C_{3}}
\end{gathered}
$$
\]

since
$\frac{1}{2} \frac{\sin 2(\xi-u)}{\sin \xi}=1-u^{\prime}(0)+\xi r\left(\xi_{4}\right), \quad\left|r\left(\xi_{4}\right)\right| \leqslant \max \left[\frac{\sin 2(\xi-u)}{\sin \xi}\right]^{\prime}(0 \leqslant \xi \leqslant b)$
Applying the in equalities (3.2) and analogous estimates to the second equation in (1.1) and the boundary conditions (1.2), we obtain that the operator \mathbf{P} acts from X into Y.

Theorem 3.1. Besides the trivial solution $u=v \equiv 0$, the problem (1.1), (1.2) has anot her solution for which the asymptotic expansions (2.10) are valid, where the following estimates hold:

$$
\begin{equation*}
\max \left|x_{n}(\xi)\right| \leqslant m_{3} \varepsilon^{n}, \quad \max \left|z_{n}(\xi)\right| \leqslant m_{3} \varepsilon^{n} \quad(0 \leqslant \xi \leqslant b) \tag{3.3}
\end{equation*}
$$

For the proof we use a theorem [2] which permits establishment of the existence of a solution in the neighborhood of $\mathbf{V}_{k}{ }^{*}$, where a segment of the asymptotic series is taken as $\mathbf{V}_{k}{ }^{*} \equiv\left(\varphi_{k}, \psi_{k}\right)$.

Theorem 3.2. Let the operator \mathbf{P} be defined in the sphere $\Omega\left(\left\|\mathbf{V}-\mathbf{V}_{\boldsymbol{k}} *\right\| \leqslant R\right)$ of the space X, and have a continuous second derivative in the sphere $\Omega_{0}\left(\left\|\mathbf{V}-\mathbf{V}_{k}^{*}\right\| \leqslant r<R\right)$. Moreover, let there exist an operator

$$
\Gamma_{z}(\mathbf{V})=\left[\mathbf{P}^{\prime} \mathbf{v}_{k}^{*}(\mathbf{V})\right]^{-1}
$$

and let be satisfied the conditions

$$
\begin{array}{ll}
\text { (1) }\left\|\mathbf{P}\left(\mathbf{V}_{k}^{*}\right)\right\|_{Y} \leqslant m_{1} \varepsilon^{k+1} & \text { (2) }\left\|\mathbf{P}_{v^{n}}\right\| \leqslant m_{3} \\
\text { (3) }\left\|\Gamma_{\mathrm{E}}\right\|(Y \rightarrow X) & \leqslant m_{2} \varepsilon^{-m}
\end{array} \quad \text { (2m<k+1) }
$$

Then (3.1) has the solution \mathbf{V}^{*} for sufficiently small ϵ :

$$
\varepsilon<\left(2 m_{1} m_{2}{ }^{2} m_{3}\right)^{2 m-l-1}
$$

and the following eatimate is valid

$$
\left\|\mathbf{V}^{*}-\mathbf{V}_{k}^{*}\right\|_{X} \leqslant C \varepsilon^{h+1-m}
$$

Proof. Let us show that the conditions of Theorem 3.2 are satisfied, where $m=4$ is independent of k, and k can be chosen such that $k>2 m-1$.

The first estimate of (3.4) can be established directly from the relationship

$$
\begin{equation*}
\mathbf{P}\left(\mathbf{V}_{k}^{*}\right)=O\left(\varepsilon^{k+1}\right), \mathbf{V}_{k^{*}}^{*} \equiv\left(\varphi_{k}, \psi_{k}\right) \tag{3.5}
\end{equation*}
$$

which is easily verified by subatituting ψ_{k} and ϕ_{k} in the left side of the system (1.1), (1.2).
Furthermore, we show that the following estimate holds

$$
\begin{equation*}
\left\|\Gamma_{\varepsilon}\right\|_{(Y \rightarrow X)} \leqslant m_{\mathrm{g}} e^{-4} \tag{3.6}
\end{equation*}
$$

To do this we consider the Frechet derivative on the element $\mathbf{V}_{k}{ }^{*}$:

$$
\begin{gathered}
\mathbf{P}_{\mathbf{v}_{k}}(\mathbf{V}) \equiv\left\{\varepsilon^{2}\left[\sin \xi u^{\prime \prime}+\cos \xi u^{\prime}-\frac{\cos 2\left(\xi-\varphi_{k}\right)}{\sin \xi} u-(1+v) u \sin \left(\xi-\varphi_{k}\right)\right]-\right. \\
-\psi_{k} u \cos \left(\xi-\varphi_{k}\right)+v \sin \left(\xi-\varphi_{k}\right) \\
\mathbf{e}^{2}\left(\sin \xi v^{\prime \prime}+\cos \xi v^{\prime}-\left[\frac{\cos ^{2}\left(\xi-\varphi_{k}\right)}{\sin \xi}-v\left(1-\varphi_{k}\right) \sin \left(\xi-\varphi_{k}\right)\right] v-\right. \\
\left.-\Psi_{k}\left[\frac{\sin 2\left(\xi-\varphi_{k}\right)}{\sin \xi} u+v u^{\prime} \sin \left(\xi-\varphi_{k}\right)+v u\left(1-\varphi_{k}\right) \cos \left(\xi-\varphi_{k}\right)\right]-\sin \left(\xi-\varphi_{k}\right) u\right\}
\end{gathered}
$$

and for $\zeta=b$:

$$
\left\{u^{\cdot}+v \frac{u}{\sin \xi} \cos \left(\xi-\varphi_{k}\right), v^{\prime}-v v \frac{\cos \left(\xi-\varphi_{h}\right)}{\sin \xi}-v \psi_{h} u \frac{\sin \left(\xi-\varphi_{k}\right)}{\sin \xi}\right\}
$$

Let as consider the system of equations

$$
\begin{equation*}
\mathbf{P}_{\mathbf{v}_{k}}^{\prime *}(\mathbf{V})=\mathbf{f}, \quad \mathbf{f} \equiv\left(f_{1}, f_{2}\right) \tag{3.7}
\end{equation*}
$$

Utilizing (2.8) and (2.9), we rewrite (3.7) as

$$
\begin{gather*}
\varepsilon^{2}\left\{\sin \xi u^{\prime \prime}+\cos \xi u^{\prime}-u \frac{\cos 2\left(\xi+\varepsilon s_{2}\right)}{\sin \xi}+(1+v) u \sin \left(\xi+\varepsilon s_{2}\right)\right\}- \\
-v \sin \left(\xi+\varepsilon s_{2}\right)-\varepsilon s_{1} u \cos \left(\xi+\varepsilon s_{2}\right)=f_{1} \\
\varepsilon^{3}\left\{\sin \xi v^{\prime \prime}+\cos \xi v^{\prime}-\left[\frac{\cos ^{2}\left(\xi+\varepsilon s_{2}\right)}{\sin \xi}-v\left(1+\varepsilon s_{2}\right) \sin \left(\xi+\varepsilon s_{2}\right)\right] v+\right. \\
\left.+\varepsilon s_{1} u \frac{\sin 2\left(\xi+\varepsilon s_{2}\right)}{\sin \xi}+v \varepsilon u^{\prime} s_{1} \sin \left(\xi+\varepsilon s_{2}\right)+v \varepsilon s_{1} u\left(1+\varepsilon s_{2}{ }^{\prime}\right) \cos \left(\xi+\varepsilon s_{2}\right)\right\}+ \\
+u \sin \left(\xi+\varepsilon s_{2}\right)=f_{2} \tag{3.8}
\end{gather*}
$$

with the boundary conditions

$$
\begin{gather*}
u=v=0 \quad \text { for } \xi=0 \\
u^{\prime}+v \frac{u}{\sin \xi} \cos \left(\xi+\varepsilon s_{2}\right)=\varphi_{1} \quad \text { for } \xi=b \tag{3.9}\\
v^{\prime}-v \frac{v \cos \left(\xi+\varepsilon s_{2}\right)}{\sin \xi}+v \varepsilon s_{1} u \frac{\sin \left(\xi+\varepsilon s_{2}\right)}{\sin \xi}=\varphi_{2} \quad \text { for } \xi=b \\
s_{1}=\varepsilon^{-1} \varphi_{k}, \quad s_{2}=\varepsilon^{-1}\left(\varphi_{k}-2 \xi\right)
\end{gather*}
$$

We shall henceforth consider that $\varphi_{1}=\varphi_{2}=0$ for $\zeta=b$ since reduction to this case is executed simply by replacing u and v, respectively, by

$$
u+\frac{\varphi_{1} \xi}{1+v k_{1} b}, \quad v+\frac{1}{1-v k_{1} b}\left(\varphi_{2}-\frac{8 k_{2} b \varphi_{1}}{1+v k_{1} b}\right) \xi
$$

where k_{1} and k_{2} are the numbers

$$
k_{1}=\frac{\cos \left(b+e s_{3}(b)\right)}{\sin b}, \quad k_{2}=\frac{v s_{1}(b) \sin \left(b+e s_{2}(b)\right)}{\sin b}
$$

where we have $k_{1}>0$ for $b<1 / \pi$ and safficiently amall ϵ. The boundary conditions will be homogeneons with such a substitution, and f_{2} and f_{2} on the right sides acquire terms of the form

$$
m_{1} \varphi_{1}(b) \xi+m_{2} \varphi_{2}(b) \xi .
$$

Let us maltiply the first equation of (3.6) by $v+u$, the second by $v-u$, and let as integrate between 0 and b and then add. We hence obtain

$$
\begin{align*}
& k^{2}\left[\int_{u}^{b} \sin \xi u^{\prime 2} d \xi+\int_{i}^{b} \sin z v^{2} d \xi+\int_{0}^{b} \frac{\cos ^{2} \xi \cos 2 \varepsilon s_{2}}{\sin \xi} u^{2} d \xi+\int_{u}^{b} \frac{\cos ^{2}\left(\xi+z s_{2}\right)}{\sin \xi} v^{2} d \xi\right]+ \\
& +\varepsilon^{2}\left[-\int_{0}^{b} u^{2} \sin \xi \cos 2 \varepsilon \sin _{2} d \xi-2 \int_{0}^{b} u^{2} \cos \xi \sin e s_{2} d \xi-(1+v) \int_{0}^{b} u^{2} \sin \left(\xi+\operatorname{ses}_{2}\right) d \xi-\right. \\
& -v \int_{0}^{b} v^{2}\left(1+e s_{2}\right) \sin \left(\xi+\varepsilon \varepsilon_{2}\right) d \xi-\int_{0}^{b} \frac{\sin ^{2}\left(\xi-\varepsilon-\varepsilon s_{2}\right)}{\sin \xi} u v d \xi_{0}- \\
& -(1+v) \int_{0}^{b} v a \sin \left(\xi+\varepsilon s_{2}\right) d \xi+ \\
& \left.+v \int_{0}^{b} v u\left(1-\varepsilon x_{2}\right) \sin \left(\xi+\varepsilon S_{2}\right) d \xi\right]_{2}-\varepsilon^{s}\left[\int_{0}^{\xi} \frac{\sin 2\left(\xi+e s_{9}\right)}{\sin \xi} s_{1} t v y d \xi+\right. \\
& +v \int_{y}^{b} s_{1} v u\left(1+e s_{2}\right) \cos \left(\xi+e s_{2}\right) d \xi+v \int_{0}^{b} s_{1} u^{*} v \sin \left(\xi+\varepsilon s_{2}\right) d \xi- \tag{3.10}\\
& -2 \int_{0}^{b} s_{1} u^{2} \cos \xi \cos \varepsilon s_{2} d^{i} \xi-\int_{0}^{b} \frac{\cos 2 \xi \sin \varepsilon s_{2}}{\sin \xi} s_{1} u^{\varepsilon} d \xi-v \int_{0}^{b} s_{1}\left(1+\varepsilon s_{2}\right) u^{5} \cos \left(\xi+\varepsilon s_{2}\right) d \xi-
\end{align*}
$$

$$
\begin{aligned}
& +\varepsilon \int_{0}^{b} s_{1} v u \cos \left(\xi+\varepsilon s_{2}\right) d \xi+\varepsilon^{2}\left[-v v^{2}(b) \cos \left(b+\varepsilon s_{2}(b)\right)+v u^{2}(b) \cos \left(b+\varepsilon s_{2}(b)\right)+\right. \\
& \left.+2 v v(b) u(b) \cos \left(b+\varepsilon s_{2}(b)\right)\right]_{4}+\varepsilon^{s}\left[v v(b) u(b) \sin \left(b+\varepsilon s_{2}(b)\right)-\right. \\
& -v_{1}(b) u^{2}(b) \sin \left(b+\varepsilon s_{2}(b)\right]_{5}=\int_{0}^{b} f_{1}(v+u) d \xi+\int_{0}^{b} f_{2}(v-u) d \xi
\end{aligned}
$$

(The numbers indicated after the aquare brackets are ordered for convenience).
Let us note that in deriving (3.10) we used an equality which is valid for any amooth function satiafying conditions (3.9) for $\varphi_{1}=\varphi_{2}=0$:

$$
\begin{gathered}
\int_{0}^{b} v\left(\sin \xi u^{\prime}\right)^{\prime} d \xi-\int_{0}^{b} u\left(\sin \xi v^{\prime} d \xi=-2 v p(b) u(b) \cos \left(b+2 s_{2}(b)\right)+\right. \\
+\varepsilon \sin _{1}(b) u^{2}(b) \sin \left(b+\varepsilon s_{2}(b)\right)
\end{gathered}
$$

Let us show that the expressions in the gecond and third square brackete can be eatimated by atilizing the inequalities

$$
\begin{gather*}
\varepsilon^{2}[\ldots \ldots]_{2} \leqslant m_{1} e^{2} \int_{0}^{b}\left(v^{2}+u^{2}\right) \sin \xi d \xi \tag{3.11}\\
e^{3}[\ldots]_{3} \leqslant m_{1} e^{s}\left(\int_{0}^{b}\left(v^{2}+u^{z}\right) \sin \xi d \xi+\int_{0}^{b} u^{2} \sin \xi d \xi\right) \tag{3.12}
\end{gather*}
$$

For the proof let we note the following inequalitien which are valid under the conditione that $0<\xi<b<1 / 8 \pi$ and ϵ is aufficieatly manall

$$
\begin{array}{ll}
\left|s_{1}\right|<m \zeta \leqslant m^{1 / 2} \pi \sin \zeta, & \left|s_{3}\right| \leqslant m \xi_{1}\left|e s_{2}^{\prime}\right| \leqslant m \\
1 / 2 \pi \sin \zeta \leqslant \sin 1 / s^{\prime} \zeta, & \sin 2 \xi \leqslant 2 \sin \xi \tag{3.13}\\
\left|\sin \varepsilon s_{3}\right| \leqslant \sin \xi, & \cos e s_{3}>1-\alpha, 0 \leqslant \xi+e s_{2}<1 / 2 \pi \\
\sin \left(\zeta+e s_{2}\right) \geqslant \pi^{-1} \sin \xi, & \left|\sin \left(\xi+e s_{2}\right)\right| \leqslant 2 \sin \zeta
\end{array}
$$

whore a can be made arbitrarily amall because of the selection of amall ε.
Utiliding the eatimates (3.13) as well as arithmetic mem inequalities, we arrive at (3.11) sind (8.12).

Analogously wo eatabliah the following estimates:

$$
\begin{array}{r}
\int_{0}^{b}\left(v^{3}+u^{2}\right) \sin \left(\xi+e s_{3}\right) d \xi \geqslant \frac{1}{\pi} \int_{0}^{b}\left(v^{2}+u^{2}\right) \sin \xi d \xi \\
\varepsilon \int_{0}^{b} s_{1}\left(u^{2}+v u\right) \cos \left(\xi+e s_{g}\right) d \xi \leqslant m e \int_{0}^{b}\left(v^{2}+u^{2}\right) \sin \xi d \xi \tag{3.14}\\
\varepsilon^{2}[\ldots] \geqslant-2 \varepsilon^{2} v u^{2}(b) \cos \left(b+e s_{2}(b)\right), \quad \varepsilon^{8}[\ldots]_{5} \geqslant-\varepsilon^{8} m\left(u^{2}(b)+v^{2}(b)\right)
\end{array}
$$

Applying (3.11) to (3.14), we dedace from (3.10)

$$
\begin{align*}
& \varepsilon^{3}\left[\int_{0}^{b} u^{\prime 2} \sin \xi d \xi+\int_{0}^{b} \frac{\cos { }^{2} \xi \cos 2 e t_{3}}{\sin \xi} u^{2} d \xi+\int_{0}^{b} v^{2} \sin \xi d \xi+\int_{0}^{b} \frac{\cos ^{2}\left(\xi+e S_{2}\right)}{\sin \xi} v^{2} d \xi\right]_{1}- \\
& -e^{2} m_{1} \int_{0}^{b}\left(v^{2}+u^{2}\right) \sin \xi d \xi-\varepsilon^{2} m_{3} \int_{0}^{b}\left(v^{2}+u^{2}\right) \sin \xi d \xi-e^{8} m_{3} \int_{0}^{b} u^{\prime 2} \sin \xi d \xi+ \\
& +\frac{1}{\pi} \int_{0}^{b}\left(v^{2}+u^{2}\right) \sin \xi d \xi-e m_{4} \int_{0}^{b}\left(v^{2}+u^{2}\right) \sin \xi d \zeta-2 e^{2} v u^{2}(b) \cos \left(b+e s_{1}(b)\right)- \\
& -\varepsilon^{2} v m_{5}\left(u^{2}(b)+v^{4}(b)\right) \sin \left(b+\varepsilon s_{3}(b)\right) \leqslant \int_{0}^{b}\left(\left|f_{1}\right||v+u|+\left|f_{2}\right||v-u|\right) d \xi \tag{3.15}
\end{align*}
$$

Let an now choose ϵ so amall that the inequalition

$$
\begin{array}{cl}
e m_{4}+e^{2} m_{1}+\varepsilon^{3} m_{2}<\pi^{-1}, \quad 8^{3} m_{3}<1 / 3 a, & \cos 2 \varepsilon s_{2}>1-1 / 3 \alpha \\
(1-\alpha) \cos b>2 v \cos \left(b+e s_{2}(b)\right) & (0<v<0.5) \tag{3.16}\\
e m_{8} v \operatorname{tg} b<1 / 3 \alpha, \quad \cos \xi \geqslant \cos b \quad(0<\xi \leqslant b<1 / \mathrm{s} \pi)
\end{array}
$$

would be satisfied mimulteneonsly.
Uaing (3.16) and inequalitien of the form

$$
\begin{equation*}
u^{s}(b)=2 \int_{i}^{b} u u^{\prime} d \xi<\int_{0}^{b} u^{\prime 2} \sin \xi d \xi+\int_{0}^{b} \frac{u^{z}}{\sin \xi} d \xi \tag{3.17}
\end{equation*}
$$

$$
\begin{gather*}
\frac{a}{3} \varepsilon^{2}\left(\int_{0}^{b} u^{2} \sin \xi d \xi+\cos ^{2} b \int_{0}^{b} \frac{u^{2}}{\sin \xi} d \xi+\int_{0}^{b} v^{2} \sin \xi d \xi+\cos ^{2} b \int_{0}^{b} \frac{v^{s}}{\sin \xi} d \xi\right) \xi \\ \tag{3.18}
\end{gather*}
$$

Applying the aatimate (3.17) once again to the left aide of (3.18), and the triangle inequality to the right, we deduce

$$
1 / 3 \operatorname{de}^{2}\left(\max \left|v^{2}\right|+\max \mid u^{2} \|\right) \leqslant\|f\|_{Y}\left(\max |v|^{3}+\max |u|^{2}\right)^{1 / 2} \quad(0 \leqslant \xi \leqslant b)
$$

Hence

$$
\begin{equation*}
\max |v|+\max |u| \leqslant m \varepsilon^{-2}\|\mathbf{f}\|_{Y} \quad(0 \leqslant \xi \leqslant b) \tag{3.49}
\end{equation*}
$$

In order to obtain an eatimate for the higher derivatives, let us add the term -u csc ξ to the left and right aides of the first Eq. in (3.8), and $-v \csc \xi$ to the second Eq.

Then (3.8) can be rewritten as

$$
\begin{equation*}
\varepsilon^{2} \sin \xi \frac{d}{d \xi} \frac{1}{\sin \xi} \frac{d}{d \xi} \sin \xi u=F_{1}, \quad \varepsilon^{2} \sin \xi \frac{d}{d \xi} \frac{1}{\sin \xi} \frac{d}{d \xi} \sin \xi v=F_{3} \tag{3.20}
\end{equation*}
$$

Here

$$
\begin{gathered}
F_{1}=\frac{1}{\varepsilon^{2}} f_{1}+\frac{\cos 2\left(\xi+\varepsilon s_{2}\right)-1}{\sin \xi}-(1+v) u \sin \left(\xi+\varepsilon s_{9}\right)+\frac{1}{\varepsilon^{2}} v \sin \left(\xi+\varepsilon s_{2}\right)+ \\
+ \\
F_{2}=\frac{1}{\varepsilon} s_{1} u \cos \left(\xi+\varepsilon s_{3}\right) \\
\varepsilon^{2} f_{2}+\frac{\cos ^{2}\left(\xi+\varepsilon s_{2}\right)-1}{\sin \xi} v-v v\left(1+\varepsilon s_{2}{ }^{\prime}\right) \sin \left(\xi+e s_{2}\right)-\varepsilon s_{1} u \frac{\sin 2\left(\xi+\varepsilon s_{3}\right)}{\sin \xi}- \\
\quad-v e u^{\prime} s_{1} \sin \left(\xi+\varepsilon s_{2}\right)-v e s_{1} u\left(1+\varepsilon s_{2}{ }^{\prime}\right) \cos \left(\xi+\varepsilon s_{2}\right)-\frac{u}{8^{2}} \sin \left(\xi+\varepsilon s_{2}\right)
\end{gathered}
$$

We now pass from (3.20) to a system of two equivalent integral equations, from which we obtain eatimatee of $u^{\prime \prime}$ and $v^{\prime \prime}$ by atilizing the estimates (3.19). As illustration, let us obtain eatimates of u^{\prime} and $u^{\prime \prime}$. Taking account of the boondary conditions (3.9), we have from (3.20)

$$
\begin{equation*}
u=\frac{1}{\sin \xi} \Phi(\xi, t, b)+k \operatorname{tg} \frac{\xi}{2} \Phi(b, t, b) \tag{3.21}
\end{equation*}
$$

$\Phi(\zeta, t, b)=\int_{0}^{E} \sin t d t \int_{b}^{t} \frac{F_{1}(s)}{\sin s} d s, \quad k=\frac{\cos b-v \cos \left(b+e s_{2}(b)\right)}{\sin b\left[\sin b-\left(\cos b-v \cos \left(b+e s_{2}(b)\right) \operatorname{tg}{ }^{1 / 2} b\right]\right.}$
Furthermore, lot us note the bllowing valid eatimate for F_{1}

$$
\begin{equation*}
\left|F_{1}\right| \leqslant m \varepsilon^{-4} \xi\|f\|_{C_{0}} \leqslant 1 / 2 m \pi^{-4}\|f\|_{C_{0}} \sin \xi \quad\left(0 \leqslant \xi_{0} \leqslant b<1 / 2 \pi\right) \tag{3.22}
\end{equation*}
$$

This follows from (3.20) by virtue of the eatimates (3.13) and the fact that. $f_{1} \in C_{0}$. From (3.21) we have

$$
\begin{equation*}
u^{\prime}=-\frac{\cos \xi}{\sin ^{2} \xi} \Phi(\xi, t, b)+\int_{b}^{\zeta} \frac{F(s)}{\sin s} d s+\frac{k}{2 \cos ^{2}(\xi / 2)} \Phi(b, t, b) \tag{3.23}
\end{equation*}
$$

Tuliming (8.22) and the triaggle inequality, we deduce from (3.23)

$$
\begin{equation*}
\max \left|u^{\prime}(\xi)\right| \leqslant m e^{-4} \|\left.\mathbf{f}\right|_{\mathbf{Y}} \quad(0 \leqslant \xi \leqslant b) \tag{3.24}
\end{equation*}
$$

Let us consider $u^{\prime \prime}$:

$$
u^{u}=\frac{1+\cos ^{2} \xi}{\sin ^{3} \xi} \Phi(\xi, t, b)-\frac{\operatorname{ctg} \xi}{2 \sin ^{2}(\xi / 2)} \Phi(\xi, \xi, b)+\frac{F_{1}(\xi)}{\sin \xi}+\frac{k \sin (\xi / 2)}{\cos ^{3}(\xi / 2)} \Phi(b, t, b)
$$

Applying the identity

$$
a_{1} b_{1}-a_{2} b_{2}=a_{1}\left(b_{1}-b_{2}\right)+b_{2}\left(a_{1}-a_{2}\right)
$$

to the difference between the first two members on the right side, we have
$u^{\prime \prime}=-\frac{1+\cos ^{2} \xi}{\sin ^{3} \xi} \Phi(\xi, \xi, t)+\frac{1+\cos ^{2} \xi}{2 \sin \xi \cos ^{2}(\xi / 2)} \Phi(\xi, \xi, b)+\frac{F_{1}(\xi)}{\sin \xi}+\frac{k \sin \xi}{\cos ^{3}(\xi / 2)} \Phi(b, t, b)$
Uaing (3.22), the trikugle inequality, and also the inequalities

$$
|\xi-t|<\xi, 0 \leqslant \xi \leqslant b<1 / 2 \pi
$$

we obtain from (3.25)

$$
\begin{equation*}
\max \left|u^{\prime \prime}(\xi)\right| \leqslant m \varepsilon^{-4}\|f\| Y(0 \leqslant \xi \leqslant b) \tag{3.26}
\end{equation*}
$$

From (3.19), (3.24) and (3.26) follows:

$$
\|\mathbf{V}\|_{X} \leqslant m_{1} \mathrm{e}^{-4}\|\mathbf{f}\|_{Y}, \quad\|\mathrm{~V}\|_{X} \leqslant m_{1} \mathrm{e}^{-5}\left\|\mathbf{P}_{\mathbf{v}_{k}}:^{\prime}(\mathbf{V})\right\|_{Y}
$$

We hence easily deduce that the operator $\mathbf{P}_{\mathbf{v}_{k^{*}}}$ on the right side of the last inequality is an inverse and the estimate (3.6) holds.

The estimate of $\left\|P \mathbf{P}^{\prime \prime}\right\|$ follows from an examination of the bilinear form

$$
\mathbf{P}_{\mathbf{v}^{\prime}}\left(\mathbf{V}_{1}\right)\left(\mathbf{V}_{2}\right), \quad \mathbf{V}_{1} \equiv\left(u_{1}, v_{1}\right), \quad \mathbf{V}_{2} \equiv\left(u_{2}, v_{9}\right) \quad\left(\frac{\sin 2(\xi-u)}{\sin \xi} u_{1} u_{2}\right)
$$

For example, a typical member of this form is exhibitedin the parentheses. Evidently

$$
\left|\frac{\sin 2(\xi-u)}{\sin \xi} u_{1} u_{2}\right| \leqslant m|\sin 2(\xi-u)|\left|\frac{u_{1}}{\xi^{1 / 2}}\right|\left|\frac{u_{2}}{\xi^{1 / 2}}\right| \leqslant m\left\|u_{1}\right\|_{C_{2}}\left\|u_{2}\right\|_{C_{2}}
$$

In the general case we obtain

$$
\left\|P_{V^{\prime \prime}}\left(\mathbf{V}_{1}\right)\left(\mathbf{V}_{2}\right)\right\|_{Y} \leqslant m_{3}\left\|V_{1}\right\|_{X}\left\|V_{2}\right\|_{X}
$$

from which the second estimate in (3.4) indeed follows.
Thus the conditions of Theorem 3.2 are satisfied if $k>7$ and ϵ is sufficiently small $\left(0<\varepsilon<\varepsilon_{1}\right)$. Hence, (3.1) has the solution $\mathbf{V}^{*} \equiv(u, v)$, for which the estimate

$$
\begin{equation*}
\left\|\mathbf{V}^{*}-\mathbf{v}_{k^{*}}\right\| \leqslant m e^{2-3} \quad(k>7) \tag{3.27}
\end{equation*}
$$

is valid.
Now applying the triangle inequality and explicit expressions for the functions h_{s}, g_{s}, we obtain eatimates of x_{n}, x_{n} and their derivatives from (3.27).

The author is grateful to I.I. Vorovich and V.I. Iudovich for attention and assistance in this work.

BIBLIOGRAPHY

1. Srabahchik, L.S., and Iudovich, V.I., Asymptotic integration of the system of the aystem of equatione for the large deflections of a symmetrically loaded shella of revolation. PMM, Vol. 26, No. 5, 1962.
2. Srabshchik, L.S., On the asymptotic integration of a system of nonlinear equations of the plate theory. PMM, Vol. 28, No. 2, 1964.
3. Srubshchik, L.S., and Iudovich, V.I., On asymptotic integration of equilibriam equations of a fluid with surfuce tension in a gravity field. Zh. Vychisl. Matem. i Matem. Fiz., Vol. 6, No. 6, 1966.
4. Vorovich, I.I., On the existence of solations in nonlinear shell theory. Dokl. Akad. Nauk SSSR, Vol. 117, No. 2, 1957.
5. Srubshchik, L.S., Nonstiffeses of spherical shells. PMM, Vol. 31, No. 4, 1967.
6. Vorovich, I.I., and Zipalova, V.F.. On the solution of nonlinear boundary value problems of the theory of elasticity by a method of transformation to an initial value Canchy problem, PMM, Vol. 29, No. 5, 1965.
7. Reissner, E., On axisymmetrical deformation of thin shells of revolution. Proc. Symp. Appl. Math. Vol. 3, 1950.
8. Vishik, M.I., and Linsternik, L.A., Regular degeneration and the boundary layer for linear differential equations with a small parameter. Usp. Matem. Nauk, Vol. 12, No. 5, 1957.

[^0]: * Here and henceforth throughout, m_{i} are some positive constants not dependent on ξ and ε.

