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An asymptotic method, developed in [1-to 8], is used to investigate the nonstiffness of a
nonshallow spherical dome. Vorovich [4] introduced the class of nonstiff shells, i.e., shells
having for given boundary conditions, and no extemal loading, trivial ones equilibrium
states different from the trivial ones. A characteristic property of a nonstiff shell is the
fact that the lower critical loading for such shells is a negative quantity.

A rigorous proof of the existence of nonstiff shells, and a corresponding numerical
analysis of the problem within the scope of shallow theory were given in {5 and 6). Here
the nonstiffness is proved strictly for a nonshallow spherical dome with fixed hinged
clamping along the edge. Namely, it is shown that still another equilibriam mode, similar
to the mirror image, exists in addition to the trivial mode. The nonlinear Reissner equa-
tions [7] are used for the finite symmetric deformation of thin shells of revolution, derived
without assumptions on the smallness of the angle of rotation of a shell element due to
deformation.

These equations contain a natural small parameter €2, the relative thinness of the
walls (€2 = h?/a%y%, where h is the thickness, & the radius of the sphere, and y is a known
number) in the higher derivatives. To prove the existence of a second solution, asymptotic
expansions are first constructed for small € (Section 2), and then the existence of the second
solution is proved for the problem for which the constructed asymptotic expansions are
valid (Section 3).

Let ua note that if the formal construction of the asymptotic goes through for any
spherical segments (including large hemispheres), then the proposed method for the exist-
ence of the second solution is connected to the constraint that the dome be less than a
hemisphere.

1. Formulation of the problem. Let us consider a system of nonlinear
Reissner differential equations for the symmetric deformation‘of a spherical dome in the
absence of loading

82{7?&- (sin&%)-{—cos(&——u) sin(f—w) —sing (1.1)

sin g

-——v[cos(g—u)—cosg]} +vsin(§—u)=0

d . e dy cos? (§ — u) d .
8”{d—5 (SIBEd—E)— [———sina “ —v(i—d—g)sm (E—-u)] v}+
+cosf—cos(f—u)=0
O<ESOI<Ianm, 0< v<0.5)

with boundary conditions corresponding to a fixed hinge clamping of the dome along the edge

435



436 L.S. Srubshechik

u (0) = 0, v(0) =0
iv-“_ v cos (E— u) o du sin £ — sin ( — u)
[dﬁ v ]azb—o' [—df+v ]£=b=0 (1.2)

sin § sin §

All the quantities in (1,1) and (1.2) are dimensionless. Here

2
U=a—§;;y u=§—Q@, g :7’;?, T=12 (1 —+?%
(see Formula {5.8) in [7]).

Here u is the angle of rotation of a shell element due to defor mation, ¥ is the stress
function; v the Poisson ratio, £ is Young’s modulus, A the shell thickness, r the radius of
the sphere, £ a parameter corresponding to the arc length of a great circle of a unit sphere,
The small parameter €2 characterizes the relative thinness of the shell wall.

It is easy to see that the problem (1.1}, (1.2) has the trivial selution U = ©u = ().
This solution corresponds to an equilibrium mode with zero stresses and strains. Let
us consider small values of the parameter €%, Let up put €=0, Eqgs. (1.1) will transform
into algebraic equations

vy sin (& — up) = 0, cos§ — cos (E — uy) =0 (1.3)

Here there are two solations, One vy = up = 0 is trivial, and simnlatanecusly a solu-
tion of the problem (1.1), (1.2), The other solation
vy =0, uy = 2§ (1.4)
correaponds to an equilibrium mode similar to the mirror image.
The solution (1.4) satisfies (1.1}, bot does not satisfy the boundary conditions at
&=1bin (1.2). It is hence natural to expect the problem (1.1), (1.2) to have a second
solution for small €, which will hehave similarly to (1.4) everywhere within the domain,

bat will undergo rapid changes only near the boundary that the boundary conditions (1.2)
will be satisfied.

2. Construction of the asymptotic. Let us introduce some notation. Let

the vector V= (i, v) be a solution, and P[V] the left side of the syatem (1.1) to (1.4).
Asymptotic expansions

u= Z euy + Zesgs‘!' ZE*BS-{—Zn

8=0 s=0 =0 ( 9 1)
U= Z e, -+ 2 eshy + 2; e, F x,
§=0 =0 §=0

are constructed for the second solution.
The fonctions u, (£) and v, (£) are obtained by using the first iteration process [8].
Namely, we demand that
n

P[V,] = 0 (), V, = ( é &'u,, 2 e“us>

§=0 =0

Equating the coefficients of different powers of € to zero, we obtain the system (1.3)
(whereby the second solution (1.4) is chosen) to determine u,, vy, and a system of linear
homogeneous equations to determine u,, v,. Hence

u’x(g):vt(g):o (S=1,2,_,.,ﬂ).
Functions of boundary layer type A, (£), g, (£) are obtained by using the second
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iteration process [8]. To do this we seek the differences v — v, and u — uo (v, = 0,
ueg=2%) as

v= "% &%k, v—28= % ey, (2.2)
8=0 §=0

Let us substitute (2.2) into (1.1), (1.2), let us make the change £=b ~ €¢, and then
let us use Taylor expansions in the neighborhood of €=0 for the functions

sin(b—et), cos(b— et), sin (b—st -+ i esgs> , C€OS (b—st—%— i} e-‘gs}

REH $=4

and we -equate the coefficients of £%, £l ..., £" to zero. We obtain a system of nonlinear
differential equations to obtain Ay, go:

sin b.gy"" — hqsin (b + g;) = 0, sin bhy'' — cos (b -+ g,) -+ cos b - 0

To obtain h,, g, we obtain the system
sin bg,"" -+ he (t — g) cos (b + g,) — tgy’ cos b — cos b g,’ —
—hysin(b 4 g) =0 (2.4)
sin bhy” — thy’ cos b — hy' cosb (g, — t)sin (b - g,) Fesinb - 0

Analogously, we derive the first boundary condition for A, and gy at 2 =0 from (1.2),
and the second boundary condition is obtained from the requirement that the solution have
boundary layer character in the neighborhood of £= b, i.e.

hy' (0) = &' (0) = 0, by (00) = 0, gy (oc) =0 (2.5)
There resnlts from (2.3) and (2.5) that
ho = g =0 (2.6)
Now, using (2.6) we deduce from (2.4}
&' —h =0, By g1 =0

with the boundary conditions

By Q) =0, & 0 =2(1+v), g (o) =1(c0)=0
We hence obtain

() = e e) (cosa Fsing), g (E) = a(k ¢ (sina — cosa)
a(E,a):V§(1+v)exp(—l-’]7_§e£), a:%”f (2.7)

The fanctions s, &5 (S > 2) are found analogously from a system of linear equations
of the form (2.7), bat inhomogeneous now, where the right sides are finite polynomials
consisting of members of the form

™ [Bsin My, Y2 1t) +C cos (/, V2 nt)l exp (—Y, V2 kt)

where m, &, [ and n are integers not greater than s, It is easy to see that hy, 85 will be
functions of boundary layer type,
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Finally, let us introduce the infinitely differentiable monotonous functions Bs(f)' a (£),
which cancel the residual {(of exponential order of smallness) in satisfying the boundary
conditions (1.2) at £=0 for the functions &5 and Ay, respectively:

B, (§) = —8:(0) (0<CE 0.1D), _ [—h(0) (0KEO.1D)
) { 0 (026 E << b), % (%) {0 (026 <E D)

Therefore, the asymptotic expansions (2,1) may be rewritten as follows:

u=28+ Yeg,+ N eB,+zn v= ek + e, +z, (2.8)
8=1

=1 s=1 §=1

The notation
1prt:v'""’xnv n = U — 2, (29)

will be used later in Section 3.
Lt us note that the estimates®

lon | << mye, Vn] < myed (2.10)
are easily established from (2.8) and the explicit expressions for %, g, 0, and Bs .

3. Foundation of the asymptotic. Existence of a nontrivial
solution. Let us introdnce the following spaces of the vectors V = {u, v},
1) A space consisting of vectors with the finite nom

(X) 1Vix =1lule, +|vlc.

where C, denotes the Banach space whose elements are all twice continuously differ-
entiable functions in the segment [0, 5], which vanish for £=0;

2) A space of paira 4 — (f, @), wheref = (fy, fs), ® = (91, §), L.e., the space
of quadruples ) — (f,, f,, @}, ¢p) with the norm

) 1My =1hle + 1 ele.+ [91(0)] + | 93 (B) |

where Cy denotes the Banach space of all continuous functions with the finite norm

{file, = max{fi /8]  (0<E<D)
We shall consider the problem (1.1}, (1.2) as & functional equation
P(V)=0 (3.1)

where the operator P is defined by the left side of the system (1.1}, (1.2), Let us show that
the operator P acts from the space X into Y. To do this, we note that the relationships

u@=uw(0)E+u"G)E o<a<y, |u@)|<Eu],
are valid for any function u from the space C,.

Let us now consider the first Eq. in (1.1). Using the fact that u and v are elements
from C,, we easily deduce the inequalities

|cos (§E—u)—cosE| =2[sin(§—Yu)sinVpu|<|u@)I<E|a]e.
Isinfu” | TEljulle, ©<E<H) (3.2)

* féere and henceforth throughout, m; are some positive constants not dependent on
and €,
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cosfu’ + —;—w —cos(§E— u)‘ = ‘cos Eu’ (0) 4 cos Eu" (§3) & +

sin §

+ ,_;_S_____._i“ igi;u) —cos&+(cos §—cos(§—u))l<’(u'(0)— 1)cos§ +
A sin2E—u)

+ o SR2E 0] 4wt (B EeosE + (cosE—cos (—w) <

<|@w @ —1)2sin? & + Er (B |+ meb|ule, < maEl e,

since

1 sin2(E— : in2(t—u 7’
S IRESY 4w (0) 4 Er (B, |r(g4)|<max[s‘—“s‘fn—a‘i] 0<ESH)

Applying the inequalities (3.2) and analogons estimates to the second equation in
(1.1) and the boundary conditions (1.2), we obtain that the operator P acts from X into Y.
Theorem 3.1. Besides the trivial solution u = v =0, the problem (1.1), (1.2) has
another solution for which the asymptotic expansions (2.10) are valid, where the following

estimates hold:

max |z, (§)] <mge™,  max [z, () Tmee® (0KECD)  (3.3)

For the proof we use a theorem [2] which permits establishment of the existence of a
solution in the neighborhood of V,*, where a segment of the asymptotic series is taken as
Vi* = (P V2 ©

Theorem 3.2. Let the operator P be defined in the sphere Q (| V — V,*|| < R)
of the space X, and have a continuous second derivative in the sphere

Qo (|IV — Vi*|| < r <<R) . Moreover, let there exist an operator
I (V)= [P'vk* (W1t

and let be satisfied the conditions
@) PV fy < maeht @ [PV<ms
@) [Tefiv-x) < moe™ @m < k41) (3.4)

Then (3.1) has the solution V* for sufficiently small €:

e <(2m1m22m3)2m—h—l
and the following estimate is valid
[V — Vi x < Cetriom
Proof. Let us show that the conditions of Theorem 3.2 are satisfied, where m =4 is
independent of &, and k can be chosen such that k> 2m —~ 1.
The first estimate of (3.4) can be established directly from the relationship
P (V") = 0 (" 1), Vi* = (@r, ¥n) (3.5)
which is easily verified by substituting Y, and ¢ in the left side of the system (1.1), (1.2).
Furthermore, we show that the following estimate holds
| Teliyox) S me™ (3.6)
To do this we consider the Frechet derivative on the element V,*:
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kan (V= {sz [sin Eu” + cosEu’ —-£‘.3.5_E§%§n;£q)_’~) u—(1+vyusin(f — Q’k)] —

— Piu €08 (£ — @) 4 v sin (E — @)
et (éin_&v” -+ cos kv’ — [%’i&l —v(l — @) sin (€ — q;k)] V-

9y [TEEZB) g sin € —00) v (1~ ) cos(E—9u) | — sin(E—@u |

sin §
and for {=5:
. u — Gy COSE— @) sin (£ — ;)
u' -+ v._—_cos . el b £ 2P AT YR
{ + SnE E—@)y v —wp S0 E v u St }
Let us consider the system of equations

Py (M=t f=(f1. f2) @.7
Utilizing (2.8) and (2.9), we rewrite (3.7) as

3 {sin Eu"4 cosEu'—u 0082 (§ +es) 4+ (4 4+ v) usin (€ -+ asg)} —

sin §
— v sin (€ - esp) — esyu cos (£ 4 es9) = f1

e? {sin Ev” + cosEv — {%ﬂ’. — v {1 4 esy)sin ( 38‘2)} v -

sin g
+ eau sz%?is&)_ + vew'sy sin (€ -+ esz) -+ vesyu (1 -+ €sy7) cos (€ + esz)} +
+usin(-es)=/2 (3.8
with the boundary conditions

u=p==0 for E=0

u + v SI’;&cos (E+es)=¢q for £E=0 3.9)
+ v cos (E 4 esg) sin (£ 4- &s9) __ .
v v__mg_+vss1u_.ﬁ&_2_.(pz for E=1b
s1=E&7y, sp=2e71 (Qx — 28)

We shall henceforth consider that @, = ¢, = 0 for { = b since reduction to this case
is executed simply by replacing u and v, respectively, by

(PlE 1 _ Skgbqh
R Wl Ry (% 1+vk1b)
where k; and k, are the nambers
Ky = €08 (& -+ 882 (b)) , P (b) sin (b - es, (b))
sin b sinbd

where we have k; > 0 for b <X and sufficiently small €. The boundary conditions will be
homogeneous with sach a substitution, and f, and f; on the right sides acquire terms of the
form

m Py (BE -+ maP, (B)E.

Let us multiply the first equation of (3.6) by v + u, the second by v — u, and let us
integrate between 0 and b and then add. We hence obtain
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sinf

b h
e [ S sin 2u"d% - Ssm £t ﬁ;LS cosicosess ape S“’S € +es1) v’d&] +
[} 3

u? cos E sin esydf — (1 -+ ¥) S w?sin (£ 4 &ag) dE —

0

b
e l_ S u?sin £ c0s 285dE - 2\
0

Ce_/‘t—_..

B b
—v S v (4 -Fesyysin(E - esy) d \ sin® (E'é m’) SIS R uudE —
H o
b
— {1+ Svusm(Hasz)du
v
b b .,
+ 'VS ot (1~ £59') sin (E + £53) d&] — l j ﬁ‘%%%_ﬁsﬁs,wdz -
0 0
g ¢
-t ‘VSS;I’U (1 -+ €s2") 005 (E - B8p) dE — v Ss,u’v sin (£ 1 esa) df — {3.40¥

¥ 113

b b ) b

—3 Sl $1u% €08 E cos e50F — Sm st — s:j s1(1 -] es2’) udcos(E -] ess) dE —
sin g
o Y (1)
b . 5] l:
— v;\sluu' sin (€ 1~ £s3) dEJ + S(v’ -+ u®) sin (€ - e52) dE € Sslu”eos (£ -+ ese)dE |-
3
[ 8 o

+ e\ siom cos (£ - ese) dE + £ [—vo? (B) cos (b + sz (b)) -+ vu? () cos (b} es: (B) -

C R

|- 2ve (b) u (b) cos (b + esq (B)}]s -+ 28 [vo (B) u (D) sin (b - esg (b)) —-
b b

— vsy (b) u? (b} sin (b 4 esg (b)}]s = Sjl (oW 4\ falw — u) dt
] [

(The numbers indicated after the square brackets are ordered for convenience).
Let us note that in deriving (3.10) we used an equality which is valid for any amooth
function satiafying conditions (3.9) for ¢, = ¢, = O:

b
S v (sin Eu')'dE — \ u (sin £o°Y'dE == — 2vu () u (b} cos (b + esz (B)) +
¢

s Oy

+ evsy (b) u? (b) sin (b 4 &3 (D))

Let us show that the expressions in the sacond and third square brackets can be
estimated by utilizing the insqualities

b
I T m,z=Sga=+ u?) sin BdE (3.11)
1]

b b

... ] < e’ (S (v -4 u? sin EdE + S wsin gdg} (3.12)
]

o
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For the proof let us note the following inequalities which are valid under the conditions
that 0 CE b < Yy n and € is sufficiently small

falKmfSmifsnsing, |n|<mE len’| <m
Yy ngin § < sin 47T, 8in 2€ < 2 ain & (3.13)
| sin &8 | < 8in §, cosesy > 1 —a, 0KE+ e Yan
sin ({ + eg) >t sin €, [sin (§+ eg)|<2sinf
where 0. can be made arbitrarily small because of the selection of small €.
Utilising the estimates {3.13) as well as arithmetic meen inequslities, we arrive st

(3.11) snd (8.12).
Anslogously we eatablish the following estimates:

b b
S (v* + wl) sin ¢ + en) dE > Jﬁ. 5 (v* + uY)sin EdE
4] L]

b b
egu (W3 + 2u) co8 (€ -+ esy) 4 < me S(v' + u%) sin EdE (3.14)
0

0
e2f.. .}« 3> — 2e%vut (b) cos (b + ess (D)), e8[...]s > — e'm (ut B) + »2(}))

Applying (3.11) to (8.14), we dedace from (3.10)

b b b b
< cos*§ cos 2883 o) g cos? (E+e8s) 2]
e’{§u‘sln§d£+§—————-sini u 5+§” 51115‘“.-4-{5 siaf ﬁ]l
b b b

— &'my S (¥* 4 u?) sin EdE — e®my S (v* -+ u?) sinkdl — e’my S u'tsin EdE -
0 0

1]

b b
+ A 5 (v* + u?) 8in EdE —emqy S (v? + u?) sin Edf — 2e?vu® (b) cos (b - esy (b)) —
n J J i
— e3vmg (u? (b) - v* (B)) sin(b+ass(b))<g(t hitv+ui+|fallv—u)dg  (3.45)
0

Let us now choose € so small that the insqualities
emg -+ e'my + €¥my, < @71, 8my < s, co8283, > 1 —Ysa
(1 — a)cosd > 2v cos (b + es, (b)) 0 < v<0.5) (3.16)
emgv tgb <'pa, cosE>cosd (O CESE<am)

would be satisfied simultaneously.
Using (8.16) and inequalities of the form

b
w(b)=2 S wu'df <

b
w?sin EdE + Ssi:’E dg 3.17)
9

QY

ws obtain from (3.15)
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b [ b
.g..e‘ (S u'ssin EdE + cos* b ,\sifi dt + S»"sin BdE + COS’sti:’E dg) <
0 1] [+ 0
]
<S(lf:l|v+ul+|/-||v-—undﬁ (3.18)
[1]

Applying the estimate (3.17) once again to the left side of {3.18), and the triangle
inequality to the right, we deduce

ye? (max | 07| 4+ max | w?) < |y (max | v [P+ max [uf*  O<E<D)
Hence
max | v} 4 max|ul| me™?|f]y OSESH) (3.19)
In order to obtain an estimate for the higher derivatives, let us add the term —u csc &

to the left and right sides of the first Eq. in (3.8), and ~ v cac £ to the second Eq.
Then (3.8) can be rewritten as

tangd 1 d . s s d

[ smﬁggma_gsmgu—h, e?sin § .

1 d . -
3 St 3 sin Ep = F, (3.20)

Here

F1=£{f1+%_§t_1_—(1+v)usin(£+esg)+.:_,vsin(i—f-&v,)-{-—

sin &
+ —:~ 81 €08 (§ + es2)
Fy= };-f:-{-wﬁ-):ll_ v—w(i —{—es;')sin(&{—esﬂ—ss,uM —
sin § sin§

—veu's; sin (§ + eso) — vesiu (1 - esy”) cos (§ + esg) — sl’ sin (§ 4 esa)

o

We now pass from (3.20) to a system of two equivalent integral equations, from which
we obtain estimates of u*’and v *’ by utilizing the estimates (3.19). As illustration, let us

obtain estimates of u’and u“’. Taking account of the boundary conditions (3.9), we have
from (8.20)

=1 : 4
=g @€ 4 V) bkt 2 0B, 1, b) (3.21)
3 t
D@t b)=Ssin tar ( F10) g k= cosb — v cos (b -+ &5y (b))
! s ) sins sin b[sin b —(cosb — v cos (b + £s3(b)) tg Ya 5]

Furthermore, let us note the bllowing valid estimate for F,

[Pl Sme gt <Yamne™|fg, sin g O<ESELam) (3.22)

This follows from (3.20) by virtue of the estimates (3.13) and the fact that.f; € C,.
From (8.21) we have

|4
r____COSE F (s) k
W=—F 06 L+ 5 Tt g @5 b) (3.23)

Utilising (3.22) and the triangle inequality, we deduce from (3.28)
max |« (B) | < met| f]y O<ESH (3.24)
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4

Let us consider s ”’:
v 4ot Eq i, 4y ctBE o py o F1(8) , ksin(g/2)
“ sind § &5 9 2sin?(€/2) &% )+sin& + cos3(£/2) eG4
Applying the identity
a0, — ayby= a4y (by — by) + by (2, — ay)

to the difference between the first two members on the right side, we have

(3.25)

v 1-4costt 1 4 cos?g L P (®) ksing
u' = WQ(E'E' 1) - W‘D(E, g,b) + Sint +c053(g/2)®(l’,t,b)

Using (3.22), the triangle inequality, and also the inequalities
[E—t|<E OSESBYan

we obtain from (3.25)
max | u" () | <me* I [y (0 < EDH) (3.26)

From (3.19), (3.24) and (3.26) follows:
VI meilly, BV I <me™ [Py (Vly

We hence easily deduce that the operator ka‘ ‘ on the right side of the last

inequality is an inverse and the estimate (3.6) holds.
The estimate of “P‘?'“ follows from an examination of the bilinear form

Py" (V1) (V3), Vi={u, #1), Vi= (us, vs) (s———————-—in i(:";: u) uxuz)
i

For example, a typical member of this form is exhibitedin the parentheses. Evidently

S;‘.'_‘_zsi(g_’a“_‘lu.uz <m|sin2(E—u)) E"% a“_j <mlug, luslg,

In the general case we obtain
[Py (V1) (Vo) lly <maf Valx ] Ve |y

from which the second estimate in (3.4) indeed follows.
Thus the conditions of Theorem 3.2 are satisfied if k> 7 and € is sufficiently small
(0 <e<e). Hence, (3.1) has the solution V* = (u, v), for which the estimate

IVe—Virf<me™ (x> 7) (3.27)
is valid.
Now applying the triangle inequality and explicit expreasions for the functions A, g,

we obtain estimates of x,, x, and their derivatives from (3.27).
The author is grateful to 1.I. Vorovich and V.I. Iudovich for attention and assistance

in this work.
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