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An amymptotic method, developed $ [l to 31, im aaed to investigate the nonmtiffnemm of a 
nonshallow spherical dome. Vorovich [4] introduced the clasr of nonstiff mhallm, i.e., ohellm 
having for given boundary conditionm, and no external loading, trivial onea equilibrium 
Etatea different from the trivial onea. A characteristic property of a nonmtiff ahell ia the 
fact that the lower critical loading for such mhells ia a negative quantity. 

A rigoronn proof of the existence of nonetiff #hello, and a corresponding numerical 
analyaia of the problem within the scope of shallow theory were given in [S and 61. Here 
the nonstiffneas ia proved strictly for a nonehallow spherical dome with fixed hinged 
clamping along the edge. Namely, it ia shown that atill another equilibrium mode, aimilu 
to the mirror image, exists in addidon to the trivial mode. The nonlinear Reiamner aqua- 
tions [7] are used for the finite symmetric deformation of thin mhella of revolution, derived 
without aamumptiona on the mmallneaa of the augle of rotation of a shell element due to 
deformation. 

These equation6 contain a natural small paameter Er, the relative thinness of the 
wall0 (El = h’/aZya , where h ie the thickness, a the radium of the sphere, aud y ia a known 
number) in the higher dadvativem. To prove the eximtennae of a seoond solution, asymptotic 
expandone are fint conmtructed for mall E (Section 21, and then the exfatence of the mecend 
solution irk proved for the problem for which the constructed amymptotic expandotto are 
valid (Section 3). 

Let us note that if the formal construction of the asymptotic goe6 through for any 
spherical segnenta (including large hemispherem), then the proposed method for the exiat- 
ence of the second molution is connected to the constraint that the dome be less than a 
hemisphere. 

1. Formulation of the problem. Let us consider a system of nonlinear 
Reismner differential equatimm for the symmetric defonuatiouof a spherical dome in the 
absence of loading 

-v[[cos(~-u)-c,os~]} + usin(E-u)= 0 

eP{$(sinE-$-)- ~~nf”)-y(l-~)sin(E--u)] U}+ 

+cos~-cos(&-u)=O 

K’6EBb<%n, 0 < v < 0.5) 

(l-1) 

with boandary conditiona coneaponding to a fixed hinge clmmping of the dome along the edge 
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u (0) = 0, u (0) = 0 

[ 
dV 
--v 

v tos (5 - U) 

dE sin c I E=b = 0, 1 $+v sin E - sin (5 - u) 
sin 4 I 

E=b =o (1.2) 

All the quantities in (1.1) and (1.2) are dimensionless. Here 

Y 
u=---- 

aEh ’ u=t---(D, I9 =-& p12(1-4) 

(sac Formula (5.8) in (71). 
Here s is the angle of rotation of a shall element due to deformation, y is the stress 

function; v the Poisson ratio, E is Young’s modnlns, h the shell thickaeee, r the radius of 
the sphere, ta parameter corresponding to the arc length of a great circle of a unit sphere, 
The small parameter E’ characterizes the relative thinness of the shell wall. 

It is easy to see that the problem (1.X). (1.2) has the trivial solution U -= U = 0. 
This solution corresponds to an equilibrium mode with zero stresses and strains. Let 
ua consider small values of the parameter E ‘. Let up put E=O. Eqa. (1.1) will transform 
into a1Rsbraic equations 

u. sin (E - uo) = 0, cog - cm (E - uo) = 0 (1.3) 

Here there are two solotiona. One we = u0 I 0 is trivial, and eimnlatsnaonsly a solu- 
tion of the problem (1.1). (1.2). The otbsr solution 

u, = 0, u* = 2E U-4) 

corresponds to an eqnilibriam mode similar to the mirror image. 
The solution (1.4) satisfies (l.l), but does not satiefy the boundary conditions at 

e- b in (1.2). It im heacc nataral to expect the problem fl.11, (1.2) to have a second 
solution for mud1 E, which will behave similarly to (1.4) everywhere within the domain, 
but will undergo rapid chmgen only near the boundary that the boundary conditions (1.2) 
will be satisfied. 

2. Construction of the asymptotic. Let ne introduce some notation. Let 
the vector V E (u, u) be a solution, and P[V] the left side of the systsm (1.1) to (1.4). 
Asymptotic erpansims 

u = i eSus + 5 esg, + i ePijs + 2, 

a=0 s=o (I=0 

u = i ESU, -/- $ EShs + 2 E”& f 5, 

S=* s==o S=O 

(2.1) 

are constructed for the second solution. 
The fuactions I (e, and vS (g, 

Namely, we demand hat 
are obtained by using the first iteration process [S}. 

P [V,] = 0 (@2+X), v, E 5 E”Us, i ma) 
( s=o SZO 

Equating the coefficients of different powsr~ of E to aero, we obtain the system (1.3) 
(whsrsby the second molntion (1.4) 10 ohosa) to determine 4, se, and a system of linear 
homogeneous equations to determine us, va. Hence 

u,(E)=~,(E)=O (s = 1, 2, . * . , n)’ 

Fanatiens of boandy layer type h, (e), gt (f) are obtained by uofng the second 
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iteration process [8]. To do this we seek the differences u - ue and n - ~0 (v. = 0, 
y=2 a8 0 

v = ; eshs, u - 2E = i .Pg, (2.2) 
a=0 SZO 

Let us substitute (2.2) into (1.1). (1.2), let ne make the chmge f= b - Et, and then 
let ue use Taylor expansions in the neighborhood of E= 0 for the functions 

sin@-get), cos(b- et), sin (b--et+ i edg,), cos b ( -et+ i EIgsj 
.S==(, 5=-l, 

and we .equate the coefficients of E’, e’,. . . , E” to zero. We obtain a system of nonlinear 

differential equations to obtain he, go: 

sin b.g,” - II, sin (b + go) = 0, sin bh,” - cos (b -1 g,,) -t- cos b 0 

To obtain A,, g, we obtain the system 

sin bg,” -t h, (1 - gl) cos (b + g,) - t.g,” cos b - cos b g”’ - 

-h, sin (b + go) = 0 (2.4) 

sin bh,” - th,’ cos b - ho’ cos 6 -b (gI - t) sin (b --- g,,) + t silt b :.: 0 

Analogously, we derive the first boundary condition for ho and go at t = 0 from (1.2), 
and the second boundary condition is obtained from the reqnirement that the eolution have 
boundary layer character in the neighborhood of 6~ b, i.e. 

h,’ (0) = go’ (0) = 0, ho (co) =: 0, go (oc) =: 0 (2.5) 

There results from (2.3) and (2.5) that 

ho = go = 0 

Now, neing (2.6) we dednce Born (2.4) 

(2.6) 

g1 
II 

- h, = 0, hllr -f- 61 = 0 

with the boundary conditions 

h,’ (0) = 0, &’ (0) = 2 (1 + v), g, (CCJ) = h, (ccl) -1 0 

We hence obtain 

12, (E) := a (E, e) (cos a -;- sin a), g, (%) == a (E, 1) (sin a - cos a) 

a(%,E)=1/2(1+v)exp(~), a=qy (2.7) 

The functfone h,, & (S > 2) are fonnd analogously from a system of linear squatlone 
of the form (2.7), but fnhomogeneons now, where the right sides are ffnfte polynomials 
consisting of membere of the fcrm 

where m, k, 2 and n are integers not gaater than 8. it is easy to see that hr, g, will be 
fanctfons of boundary layer type. 
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Finally, let us introdace the infinitely differentiable monotonous functions p,(e), s(t), 
which cancel the residual (of exponential order of smaIlness) in satisfying the boundary 
conditions (1.2) at [- 0 for the fonctions gI and h,, respectively: 

RJ (0) P,(5) = {-. (0 6 4 f0.W 
(02bBe,<b,, 

&’ (,c) = 

-t 
-2 (0) (0 % 5 d 0.w 

(02b d f 6 4 

Therefore, the asymptotic expansions (2.1) may be rewritten as follows: 

S=l s-1 S=l 

The notation 

Ip, = v - x,, ($Pn = u - 2, 

will be nred later in Section 3. 
Let aa note that the estimates* 

IVn I < &G, I&l < VJE 

are easily established from (2.8) and the explicit expressions for 

(2.97 

(2.10) 

h,, g,, a, and 6,. 

3. Foundation of the asymptotic. Existence of a nontrivial 
solution. Let as introduce the following spaoes of the vectors V 3 (u, u). 

1) A space consisting of vector8 with the finite norm 

f/Y) II v lix = il ZJ tic, + I/ u ltC* 

where C, denotes the Banaeh space whose elements are all twice continnonsly diffsr- 
entieble functions in the segment [O, b], which vanish for [= 0; 

2) A space of pairs h = (f, clp), wheref z (fl, fz), cp s (~1, cp~), i.e., the space 
of quadruplea J, G (11, fq, ql, Q) with the norm 

07 lib Ily = 11 fl ho + II f2 11~~ + I ‘Pi w + I ‘Pi (w I 
where Co denotes the Bausch space of all continaoao functions with the finite norm 

{IMG= maxIfl/Ei (0 d 4 < b) 

We shall condder the problem (l.l), (1.2) as a functional equation 

P(V)=0 (3.1) 

where the operator P $8 defined by the left side of the system fl.11, (1.2). Let us show that 
the operator P acts from the space X into Y. To do thie, we note that the relationdips 

u(&)=u’(O)6+u”(&)!? (O<Ex<b), I~G~f<~l~~c* 

are valid for any function u from the space C,. 
Let us now conaider the first Eq. in (1.1). Using the fact that u and u are elements 

from CI, we easily dedoce the ineqnalitiea 

IC0S(E-U)--c0sEI = 21sin(E-11ru)sin1/,ul~lu(~)l~Enulc, 

l~inW<5ll~Ilc, (O<Eidbl (3.2) 

* Here and henceforth thron~ont, mi are some positive constants not dependent on 
g and E. 
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I 1 
cos Eu’ + 2 

sin 2 (4 - u) 
sin 5 

- cos (E - u) 1 = / cos Ed (0) + cos Ed (Ea) E + 

I ; sint;f;4 -cosE+(cos5-cos(E-~u))~d~(u~(O~-1~COSE+ 

1 sin2(4-u) -- 
2 sin r 

=I-u’(O)+b(&), Ir(gd)l\(max S’“2s~~~‘u)]‘(04E<b) 
[ 

Applying the inequalities (3.2) and analogous estimates to the second equation in 
(1.1) and the boundary conditions (1.2). we obtain that the operator P acts from X into Y. 

Theorem 3.1. Besides the trivial solution u = v I 0, the problem (1.1). (1.2) has 
another solution for .which the asymptotic expansions (2.10) are valid, where the following 
estimates hold: 

max Is, (E)I d WC max Izu (EN < mu (0 < E < b) (3.3) 

For the proof weuse a theorem [2] which permits establishment of the existence of a 
solution in the neighborhood of VA*, 
Vk* = (‘P&r W . 

where a segment of the asymptotic series is taken as 

Theorem 3.2. Let the operator P be defined in the sphere Q (11 V - Vg*jl < R) 
of the space X, and have a continuous second derivative in the sphere 

Qo (IF - Vk*ll < r <fi) sM oreover, let there exist an operator 

rc (V) = [P$* (V)F 

and let be satisfied the conditions 

(2) IIPv”U\<m 
(3) u rr II(Y--LX) < m2e- Pm<k+i) (3.4) 

Then (3.1) has the solution V’ for sufficiently small E : 

e < (27n,7n2%13)2m-“-L 
and the following estimate is valid 

II v* - vk* ()_y < C&h+l-m 

Proof. Let us show that the conditions of Theorem 3.2 are satisfied, where m = 4 is 
independent of k, and k can be chosen each that k > 2m - 1. 

The first estimate of (3.4) can be established directly from the relationship 

P (V,*) = 0 (8’ + ‘1, Vk* = (‘Pk, $h) (3.5) 

ahfch fs easily verified by snhtituting $k and C& in the left side of the system (l.l), (1.2). 
Furthermore. we show that the following estimate holds 

II rr lltydj 6mO 

To do this we consider the Frechet derivative on the element Vk* : 
(3.6) 



440 L.S. sTldd&k 

*Vk* (V) E e2 1 L sin cue + co9 <u’ - ‘OS ‘iii, FL ) u - (1 + v) u sin (6 - qk) 
1 

- 

- \cfku cos (C - qk) + v sin (E - cpk) 

ea Sin_Ev” + cos Q’ - 
( [ 

ros2(C-%) -v((1--qk’)sin(~-qk) v- 
sin 4 1 

I_ q)k [sin w, (Ph.) u + vu' sin (C; - q+J + vu (1 - rp,;‘) co9 (< - cpk) 
1 

- sin (4 - cpk) u 

and for <= 6: 

Let [IS consider the system of equations 

P’Vk’ (V) = f, f =::(h, fz) 

Utilizing (2.8) and (2.91, we rewrite (3.7) es 

(3.7) 

es 
{ 
sin Su” + cos 4~’ - u ‘OS 2 ifn: esz) + (i + Y) 2f sin (5 + es,)} - 

- v sin (5 $- ESZ) - es124 cos (5 + ES$) = II 

es 
{ 

sin <vu + cos @‘- 
I 

co@ (c + es2) 
sin f, 

- v (1 + esz’) sin (4 + esz) 
1 

Y + 

+ eB1u sin 2 (5 + 8%) 
sin f 

+ v8u’sl sin (F + es2) + ~e.w (1 + ES~‘) ~0s (5 + ~92) 
I 

+ 

-i 24 sin (4 + 8s~) = fz {3-8) 

with tbe boundary conditions 

u==u =o for EC0 

Cl+ VU 
s1n 6 

~0s (4 + es2) = qh for E;=b (3.9) 

vs _ v v cos (5 + s4 
sin E 

+ vesl7.4 sin (C + es21 = (pa 
sin 4 

for 5 = b 

s1 = e%&, s2 = e-l @k - 2f,) 

We shall henceforth consider that (PI = CP, = 0 for &- b since reduction to this ceme 

is executed simply by replacing 1) and v, respectively, by 

Ui- 
atlc; v+ 

1 
( 

e&&q% 
i+vk~& ’ i - vk& cpo- ft_vk& ) F 

where k, and & are the nnmbem 

k, _ Cos (a + 882 W) , 
sin b 

ka = WI (b) sin (b -t es8 (a)) 
sin b 

where we hnve kl > 0 for b < Hn and sttfficieatly muall E. The boundary conditions will be 
homogateoos with such a l obatitution, and fi and fi on the right aide8 acquire termo of the 
form 

wfi (WE + m2’Pe (*If. 

Let as multiply the first equation of (3.6) by v + II, the second by v - u, and let OS 
integmte between 0 and b end then add. We henceobtain 
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(The nrtmbers indicated after the equate bra&eta are ordered for oonvenicnce). 
Let arr mote that in deriving (3.10) wsumd an eqnality which is valid for any smooth 

function satisfying oondidora 13.9) for q+ = q$ = 0: 

f or (sin Eu’)‘d< - i u (sin F;a’)‘df) - - 2YV (b) u (b) cos (b + eq (bfl _t 

V u 

+ eval (b) ua (b) sin (b _t- 12% (b)) 

Let alp ahow that the exptsssions in the second and third square bracket8 can be 
estimated by edlising the fnsqaslftlsr 

P 

ES [. . . . . _]t < ml@ 5 fo’+ uq sin @ff (3.11) 

II 
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For tho proof fat WR note the fOf~OWh(l ineqdith which are valid aador ths COAdidOAA 

that o ( f < b < I/, a aad e: lo saffloiamtty omoll 

I ‘8 I 6 mE, I eg’ I 6 m 
ein2E(2eill~ (3.13) 

coses*>l- % O*sE + %<‘/rn 

I sin (f + 8%) I Q 2 sin 5 

whore UCM be made arbitrarily maall bscaaos of tku aelection of ama 6. 
UtflfdUjYJ rho cBtfm8toa (&I@ aa WeI1 &s UkhtAStiC msaa iAeqAdkie8, we AZ&S At 

(8.11) md (8.12). 
h8iogOAA~p WO e8t8bhh the fOllOWhg edmates: 

b b 

s 
(us + u?) sin (6 + ~3) dl > . x 

s 
’ (v’ + u’) sin EdE 

0 0 

e i 81 (Aa + vu) cos (f + wt) dt Q me t (v” + u’) sin &dE (3.14) 

0 0 

es [. . .]4 > - Ze%w* (b) co9 (b + est (b)), es [. . .Js > - e*nt (d (b) + 19 (b)) 

Applyfag (3.11) to (8.14), we dadacs from (9.10) 

b b b b 
. 

a’ 
[S 

u’%in fdt + 
s s tft sin tjIf; + s 1 - 1 n 0 0 0 

Let A8 AOW AhOOM 6 80 aAId tht thA iAAqoAlith 

em, + eamz + dm, < a+, esml,<1/8u, cos2e%>i -l/S~ 

(i - C%) CO9 b > 2%’ COS (a + 88, (a)) (0 < y < 0.5) 

Smbv tg b < ‘/a a, coaC>wsb (0 6 I B b < l/r 4 

woald be utfmfiad l imaltaaaoaoly. 
Uoiy (3.16) ard fneqaalitioo of rho bna 

(3.16) 

(3.17) 

we obtain &om (5.15) 
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b 

-5 
3 

e’ (S 0 sin &ZdF; + cm% b dt+ j..siA &&+ ~~slb~~d~) < 

0 0 0 
b 

~~(~fW~+q+lfilI v--ul)dE 
0 

(3.18) 

AppMw the aatfmeta (8.17) once agafn to ths Ieft dde of (3.181, urd the triangle 
inequality io the right, we dsdacs 

~/~/8ae~(maxIv~~+maxiu~i)\<~lf~y(maxIv~”+max 1~1~~” (O<E<fb) 

Hence 

max~~I+maxIuI\<m~-t~f~y (0 % 5 Q b) (3.19) 

In order to obtain a~ eatfmate for the higher derivatfvas, let as add the term -II cat 5 
to the left and right sidea of the fint Eq. in (3.8), and - v cm e to the second Eq. 

Thea (3.8) cao be rewritten aa 

d 1 d e%sin4___ 
dtsmE dg 

sin fu = F1, e%sin 5 -.. I-- d i d sin Cv=P?, 
d{smE de 

(3.20) 

Hera 

Fz= - : fl+ 
cos2(g + es%) - 1 

sin 5 
-(1+V)usin(E&+ea%)+ ; v sin (F + s.Q) + 

+ +cos(4 f&Y%) 

FB== if%+ - 
co2 (E + es*) - 1 

v - Vu (1 + es%‘) sin (4 + es%) - equ sin 2 (E + ea) _ 
sin & sin E 

- vsu’s1 sin ( f + E‘s%) -- lteslli (1 + es%‘) cos (5 + 5x%) - ; sin (E 4 es%) 

We now paaa from (3.20) to a qatem of two equivalent integral equationa, from which 
we obtaiA emdmatee of u”aud u”by utilising the eatimateu (3.19). Aa illoattnti~n, let ua 
obtain eatimatea of u’and u”. Taking accotlllt of the boundary conditions (3.9), we have 
from f3.20) 

u=-‘(I$, t, b)+ktg$Q,(b, t, b) 
sm E 

(3.21) 

cos b - Y cos (b + e.~ (b)) 

0 b 
sinb[sinb-(cosb-vcos(b+es%(b))tg~/%b] 

Fwthermore, let IN note the Mlowing valid eatimate for F, 

I FI I 6 ~7 II f Ilc, < ‘12 mm-* II f aC, sin 5 (OdEeb<t/aA) (3.22) 

Thlr fellewe frem (3.20) by virtue of the emtimateo (3.13) aAd the fact that ifi E c,. 
From (3.21) we have 

lb*=- 
SW 

r. F w cm’ 0% 4 b)+ Gd~+2cos~k(~,2~0@,t, b) 
s 

(3.23) 
b 

utiffrf~g (3.22) aAd the tdmgle inequolfty, w4 deduce from (3.23) 

max I u’ (E) I d me-*l II f tp (0 6f & < b) (3.24) 
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Let as consider u”: 

~“=~;;f;~,(E,r, b)- ctg5 
2 sin? (4 / 2) 

a>(& 5, b) +!$!+ ksin(E/2)Q,(b, t, b) 
toss (4 / 2) 

Applying the identity 

a,b, - a,b,= aI (b, - ba) + b, (QI - as,) 

to the difference between the fimt two members on the right side., we have 

(3.25) 

u’ = - ’ + cm2 E @ (4 4 1) ..I_ 1 + co9 < 
singe ’ ’ ’ 2sinfcosZ(c/2) 

Q (4, Lb) -I- 8 + co”s:~;;$’ (b, t, b) 

Using (3.22), the triangle ineqaelity, aad also the ineqaalitiee 

lf- t I< 4, 0 B 4 < b < ?‘zn 
we obtain from (3.25) 

max I u” (4) I 6 me-* II f l/Y (0 < E < b) (3.2G) 

From (3.19). (3.24) and (3.26) follows: 

II V ljg G ml@ II f lly, II V llX f ml0 II PVk8’ ( V) lly 

We hence easily deduce that the operator Pvk* ’ on the right side of the last 

iaeqaality is an inverse aad the estimate (3.6) holds. 
The estimate of IlP\j’j( f o ows from an examination of the bilinear form 11 

P,’ iv11 fV21, Vl = (Ul, t’l), Va = (Q, 32) 

! 

sin 2 (5 - 4 

sin F; 
ulu2 

f 

For example, e typical member of this form Is exhibitedin the parentheses. Evidently 

I sin 2 (E - u) 
sin 6 

~1~2 BmIsin2(4---)I -$ F ~~ll~lUC,Il~211~, 
I I II E E” I 

In the general case we obtain 

Ii P,” (VI) V2) IIy d m3 II VZ Ilx II V2 [Ix 
from which the second estimate in (3.4) indeed follows. 

Thaa tbs conditions of Theorem 3.2 are satisfied if k > 7 and E is sufficiently small 

(0 < a < e1). Iience, (3.1) has the aolation V’ E (II, u), for which the estimate 

jl v* - vh_+ I/< ?7&-3 (k > 7) (3.27) 

is valid. 
Now applying the triangle iaeqaality and explicit expreaaions for the functions h,, ga, 

we obtain emtimetem of xr,, xI) and their derivative6 from (3.27). 
The aathor ia gmtefal to 1.1. Vorovich and V.I. Iodovich for atteation and aaaiotaace 

in this work. 
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